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Receiver Operating
Characteristic Curves and
Their Use in Radiology1

Sensitivity and specificity are the basic measures of accuracy of a diagnostic test;
however, they depend on the cut point used to define “positive” and “negative”
test results. As the cut point shifts, sensitivity and specificity shift. The receiver
operating characteristic (ROC) curve is a plot of the sensitivity of a test versus its
false-positive rate for all possible cut points. The advantages of the ROC curve as a
means of defining the accuracy of a test, construction of the ROC, and identification
of the optimal cut point on the ROC curve are discussed. Several summary measures
of the accuracy of a test, including the commonly used percentage of correct
diagnoses and area under the ROC curve, are described and compared. Two
examples of ROC curve application in radiologic research are presented.
© RSNA, 2003

Sensitivity and specificity are the basic measures of the accuracy of a diagnostic test. They
describe the abilities of a test to enable one to correctly diagnose disease when disease is
actually present and to correctly rule out disease when it is truly absent. The accuracy of
a test is measured by comparing the results of the test to the true disease status of the
patient. We determine the true disease status with the reference standard procedure.

Consider as an example the test results of 100 patients who have undergone mammog-
raphy (Table 1). According to biopsy results and/or 2-year follow-up results (ie, the
reference standard procedures), 50 patients actually have a malignant lesion and 50
patients do not. If these 100 test results were from 100 asymptomatic women without a
personal history of breast cancer, then we might define a positive test result as any that
represents a “suspicious” or “malignant” finding and a negative test result as any that
represents a “normal,” “benign,” or “probably benign” finding. We have used a cut point
for defining positive and negative test results. The cut point is located between the
suspicious and probably benign findings. The estimated sensitivity with this cut point is
(18 � 20)/50 � 0.76, and the specificity is (15 � 3 � 18)/50 � 0.72.

Alternatively, if these 100 test results were from 100 asymptomatic women with a
personal history of breast cancer, then we might use a different cut point, such that a
positive test result represents a probably benign, suspicious, or malignant finding and a
negative test result represents a normal or benign finding. The estimates of sensitivity and
specificity would change (ie, they would now be 0.96 and 0.36, respectively).

Important point: Sensitivity and specificity depend on the cut point used to define
positive and negative test results. As the cut point shifts, the sensitivity increases while the
specificity decreases, or vice versa.

COMBINED MEASURES OF SENSITIVITY AND SPECIFICITY

It is often useful to summarize the accuracy of a test by using a single number; for example,
when comparing two diagnostic tests, it is easier to compare a single number than to
compare both the sensitivity and the specificity values of the tests. There are several such
summary measures; I will describe a popular but easily misinterpreted one that is usually
referred to simply as accuracy. Using the second cut point in Table 1, we can compute
accuracy as the percentage of correct diagnoses in the entire sample—that is, (48 �
18)/100 � 0.66, or 66%. The strength of this measure of accuracy is its simple computa-
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tion. It has several limitations, however:
Its magnitude varies as the prevalence of
disease varies in the sample, it is calcu-
lated on the basis of only one cut point,
and false-positive and false-negative re-
sults are treated as if they are equally
undesirable. As an illustration of the first
limitation, note that in Table 2 the prev-
alence of disease is 5% instead of the 50%
in Table 1. The sensitivity and specificity
values are the same in Tables 1 and 2, yet
the estimated accuracy value in Table 2
drops to (48 � 342)/1,000 � 0.39, or
39%.

Important point: A measure of test ac-
curacy is needed that combines sensitiv-
ity and specificity but does not depend
on the prevalence of disease.

RECEIVER OPERATING
CHARACTERISTIC CURVE

In 1971, Lusted (1) described how re-
ceiver operating characteristic (ROC)
curves could be used to assess the accu-
racy of a test. An ROC curve is a plot of
test sensitivity (plotted on the y axis) ver-
sus its FPR (or 1 � specificity) (plotted on

the x axis). Each point on the graph is
generated by using a different cut point.
The set of data points generated from the
different cut points is the empirical ROC
curve. We use lines to connect the points
from all the possible cut points. The re-
sulting curve illustrates how sensitivity
and the FPR vary together.

Figure 1 illustrates the empirical ROC
curve for the mammography example.
Since in our example there are five cate-
gories for the test results, we can com-
pute four cut points for the ROC curve.
The two endpoints on the ROC curve are
0,0 and 1,1 for FPR, sensitivity. The
points labeled 1 and 2 on the curve cor-
respond to the first and second cut
points, respectively, that are defined in
the note to Table 1. Estimations of the
other points are provided in Table 3.

The ROC plot has many advantages
over single measurements of sensitivity
and specificity (2). The scales of the
curve—that is, sensitivity and FPR—are
the basic measures of accuracy and are
easily read from the plot; the values of
the cut points are often labeled on the
curve as well. Unlike the measure of ac-

curacy defined in the previous section (ie,
the percentage of correct diagnoses), the
ROC curve displays all possible cut points.
Because sensitivity and specificity are inde-
pendent of disease prevalence, so too is the
ROC curve. The curve does not depend on
the scale of the test results (ie, we can alter
the test results by adding or subtracting a
constant or taking the logarithm or square
root without any change to the ROC curve)
(3). Lastly, the ROC curve enables a direct
visual comparison of two or more tests on
a common set of scales at all possible cut
points.

It is often convenient to make some
assumptions about the distribution of
the test results and then to draw the ROC
curve on the basis of the assumed distri-
bution (ie, assumed model). The result-
ing curve is called the fitted or smooth
ROC curve. The fitted curve for the mam-
mography study is plotted in Figure 1; it
was constructed from a binormal distri-
bution (ie, two normal distributions: one
for the test results of patients without
breast cancer and another for test results
of patients with breast cancer) (Fig 2).
The binormal distribution is the most

TABLE 1
Results from Mammography Study with 100 Patients

Cut Point and Reference
Standard Result

Radiologist’s Interpretation

TotalNormal Benign Probably Benign Suspicious Malignant

Cut point 1*
Reference standard result

Cancer present 2 0 10 18† 20† 50
Cancer absent 15 3 18 13‡ 1‡ 50

Cut point 2*
Reference standard result

Cancer present 2 0 10† 18† 20† 50
Cancer absent 15 3 18‡ 13‡ 1‡ 50

Note.—Data are numbers of patients with the given result in a fictitious study of mammography in which 50 patients had a malignant lesion and 50
did not.

* For cut point 1, a positive result is defined as a test score of suspicious or malignant; for cut point 2, a positive result is defined as a test score of
probably benign, suspicious, or malignant.

† Test results considered true-positive (for estimating sensitivity) with this cut point.
‡ Test results considered false-positive (for estimating the false-positive rate [FPR] or specificity) with this cut point.

TABLE 2
Effect of Prevalence on Accuracy

Reference
Standard

Result

Radiologist’s Interpretation

TotalNormal Benign Probably Benign Suspicious Malignant

Cancer present 2 0 10 18 20 50
Cancer absent 285 57 342 247 19 950

Note.—Data are numbers of patients with the given result in a fictitious study of mammography with 1,000 patients. This data set represents a
modification of the data set in Table 1 so that the prevalence of cancer is 5%. When cut point 2 (described in the note to Table 1) is used with this data
set, the estimated sensitivity ([10 � 18 � 20]/50 � 0.96) and specificity ([285 � 57]/950 � 0.36) are the same as with the data set in Table 1. However,
one commonly used estimate of overall accuracy is the percentage of correct diagnoses in the sample. With this data set it is 39% ([10 � 18 � 20 �
285 � 57]/1,000 � 0.39), which is not the same as with the data set in Table 1.
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commonly used distribution for estimat-
ing the smooth ROC curve. There are
computer programs (for example, www-
radiology.uchicago.edu/sections/roc/software.cgi)
for estimating the smooth ROC curve on
the basis of the binormal distribution;
these programs make use of a statistical
method called maximum likelihood esti-
mation.

An ROC curve can be constructed from
objective measurements of a test (eg, se-
rum glucose level as a test for diabetes),
objective evaluation of image features
(eg, the computed tomographic [CT] at-
tenuation coefficient of a renal mass rel-
ative to normal kidney), or subjective di-
agnostic interpretations (eg, the five-
category Breast Imaging Reporting and
Data System scale used for mammo-
graphic interpretation) (5). The only re-
quirement is that the measurements or
interpretations can be meaningfully
ranked in magnitude. With objective
measurements the cut point is explicit, so
one can choose from an infinite number
of cut points along the continuum of the
test results. For diagnostic tests whose re-
sults are interpreted subjectively, the cut
points are implicit or latent in that they
only exist in the mind of the observer (6).
Furthermore, it is assumed that each ob-
server has his or her own set of cut
points.

The term receiver operating characteristic
curve comes from the idea that, given the
curve, we, the receivers of the informa-
tion, can use (or operate at) any point on
the curve by using the appropriate cut
point. The clinical application deter-
mines which cut point is used. For exam-

ple, for evaluating women with a per-
sonal history of breast cancer, we need a
cut point with good sensitivity (eg, cut
point 2 in Table 1), even if the FPR is
high. For evaluating women without a
personal history of breast cancer, we re-
quire a lower FPR. For each application
the optimal cut point (2,7) can be deter-
mined by finding the sensitivity and
specificity pair that maximizes the func-
tion sensitivity � m(1 � specificity),
where m is the slope of the ROC curve as
follows:

m �
ProbNorm

ProbDis
�

�CFP � CTN�

�CFN � CTP�
,

ProbNorm is the probability that the pa-
tient’s condition is normal before the test
is performed, ProbDis is the probability
that the patient has the disease before the
test is performed, CFP is the cost (ie, the
financial cost and/or health “cost”) of a
false-positive result, CTN is the cost of a
true-negative result, CFN is the cost of a
false-negative result, and CTP is the cost
of a true-positive result.

MEASURES OF ACCURACY
BASED ON THE ROC CURVE

One of the most popular measures of the
accuracy of a diagnostic test is the area
under the ROC curve. The ROC curve
area can take on values between 0.0 and
1.0. A ROC curve with an area of 1.0 is
shown in Figure 3. A test with an area
under the ROC curve of 1.0 is perfectly
accurate because the sensitivity is 1.0
when the FPR is 0.0. In contrast, a test
with an area of 0.0 is perfectly inaccurate.
That is, all patients with disease are in-
correctly given negative test results and
all patients without disease are incor-
rectly given positive test results. With
such a test it would be better to convert it
into a test with perfect accuracy by re-
versing the interpretation of the test re-

sults. The practical lower bound for the
ROC curve area is then 0.5. The line seg-
ment from 0,0 to 1,1 has an area of 0.5; it
is called the chance diagonal (Fig 3). If we
relied purely on guessing to distinguish
patients with from patients without dis-
ease, then the ROC curve would be ex-
pected to fall along this diagonal line.
Diagnostic tests with ROC curve areas
greater than 0.5 have at least some ability
to discriminate between patients with
and those without disease. The closer the
ROC curve area is to 1.0, the better the
diagnostic test. One method (8) of esti-
mating the area under the empirical ROC
curve is described and illustrated in the
Appendix. There are other methods
(9,10) of estimating the area under the
empirical ROC curve and its variance; all
of these methods rely on nonparametric
statistical methods.

The ROC curve area has several inter-
pretations: (a) the average value of sensi-
tivity for all possible values of specificity,
(b) the average value of specificity for all
possible values of sensitivity (11,12), and
(c) the probability that a randomly se-
lected patient with disease has a test re-
sult that indicates greater suspicion than
a randomly chosen patient without dis-
ease (9).

In Figure 1 the area under the empiri-
cal ROC curve for mammography is 0.82;
that is, if we select two patients at ran-
dom—one with breast cancer and one
without—the probability is 0.82 that the
patient with breast cancer will have a
more suspicious mammographic result.
The area under the fitted curve is slightly
larger at 0.84. When the number of cut
points is small, the area under the empir-
ical ROC curve is usually smaller than the
area under the fitted curve.

The ROC curve area is a good summary
measure of test accuracy because it does
not depend on the prevalence of disease
or the cut points used to form the curve.

TABLE 3
Construction of Empirical ROC Curve for Mammography Study

Cut Point Sensitivity* FPR†

Between normal and benign 0.96 (48/50) 0.70 (35/50)
Between benign and probably benign 0.96 (48/50) 0.64 (32/50)
Between probably benign and suspicious 0.76 (38/50) 0.28 (14/50)
Between suspicious and malignant 0.40 (20/50) 0.02 (1/50)

Note.—These data represent estimations of the points on the empirical ROC curve marked with
open circles and depicted in Figure 1. The ROC curve in Figure 1 was constructed on the basis of
the data in Table 1, with sensitivity and the FPR estimated at each possible cut point.

* Data in parentheses are those used to calculate the sensitivity value.
† Data in parentheses are those used to calculate the FPR (or 1 � specificity) value.

Figure 1. Graph of the empirical and fitted
ROC curves for the mammography study. The
points on the empirical curve are marked with
open circles and are estimated in Table 3. The
points labeled 1 and 2 on the curve correspond
to the first and second cut points, respectively,
that are defined in the note to Table 1.
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However, once a test has been shown to
distinguish patients with disease from
those without disease well, the perfor-
mance of the test for particular applica-
tions (eg, diagnosis, screening) must be
evaluated. At this stage, we may be inter-
ested in only a small portion of the ROC
curve. Furthermore, the ROC curve area
may be misleading when one is compar-
ing the accuracies of two tests. Figure 4
illustrates the ROC curves of two tests
with equal area. At the clinically impor-
tant FPR range (for example, 0.0–0.2),
however, the curves are different: ROC
curve A demonstrates higher sensitivity
than does ROC curve B. Whenever the
ROC curves of two tests cross (regardless
of whether or not their areas are equal), it
means that the test with superior accu-
racy (ie, higher sensitivity) depends on
the FPR range; a global measure of accu-
racy, such as the ROC curve area, is not
helpful here.

Important point: There are situations
where we need a more refined measure of
diagnostic test accuracy than the area un-
der the ROC curve.

One alternative is to use the ROC curve
to estimate sensitivity at a fixed FPR (or,
as appropriate, we could use the FPR at a
fixed sensitivity). As an example, in Fig-
ure 1 the sensitivity at a fixed FPR of 0.10
is 0.60. This measure of accuracy allows
us to focus on the portion of the ROC
curve that is of clinical relevance.

Another alternative measure of accuracy
is the partial area under the ROC curve. It is
defined as the area between two FPRs, e1

and e2 (or, as appropriate, the area between
two false-negative rates). If e1 � 0 and e2 �
1, then the area under the entire ROC
curve is specified. If e1 � e2, then the sen-
sitivity at a fixed FPR is given. The partial
area measure is thus a “compromise” be-
tween the entire ROC curve area and the
sensitivity at a fixed FPR.

To interpret the partial area, we must
consider its maximum possible value.
The maximum area is equal to the width
of the interval—that is, e2 � e1 (13). Mc-
Clish (13) and Jiang et al (14) recom-
mend standardizing the partial area by
dividing it by its maximum value. Jiang
et al (14) refer to this standardized partial
area as the partial area index. The partial
area index is interpreted as the average
sensitivity for the range of FPRs exam-
ined (or the average FPR for the range of
sensitivities examined). As an example,
in Figure 1, the partial area in the FPR
range of 0.00–0.20 is 0.112; the partial
area index is 0.56. In other words, when
the FPR is between 0.00 and 0.20, the
average sensitivity is 0.56.

EXAMPLES OF ROC CURVES
IN RADIOLOGY

There are many examples of the applica-
tion of ROC curves in radiologic research. I
present two examples here. The first ex-
ample illustrates the comparison of two
diagnostic tests and the identification of
a useful cut point. The second example
describes a multireader study of the differ-
ences in diagnostic accuracy of two tests
and differences in reader performance.

The first example is the study of Mush-
lin et al (15) of the accuracy of magnetic
resonance (MR) imaging for detecting
multiple sclerosis (MS). Three hundred
three patients suspected of having MS
underwent MR imaging and CT of the
head. The images were read separately by
two neuroradiologists without knowl-
edge of the clinical course of or final di-
agnosis given to the patients. The images
were scored as definitely showing MS,
probably showing MS, possibly showing
MS, probably not showing MS, or defi-
nitely not showing MS. The reference
standard consisted of results of a review
of the clinical findings by a panel of MS
experts, results of follow-up for at least 6
months, and results of other diagnostic
tests; the results of CT and MR imaging
were not included to avoid bias.

The estimated ROC curve area for MR
imaging was 0.82, indicating a good, but
not definitive, test. In contrast, the esti-
mated ROC curve area of CT was only
0.52; this estimated area was not signifi-
cantly different from 0.50, indicating
that CT results were no more accurate
than guessing for diagnosing MS. The au-
thors concluded that a “definite MS”

Figure 2. Graph shows the binormal distribution that best fits the
mammography study data. By convention, the distribution of unob-
served variables for the patients without cancer is centered at zero (ie,
�1 � 0) with variance (�1

2) equal to 1. For these data, the center of the
distribution of the unobserved variables for the patients with cancer
is estimated to be 1.59 (ie, �2 � 1.59) with variance (�2

2) estimated to
be 1.54. The binormal distribution can be described by its two pa-
rameters (4), a and b, as a � (�1 � �2)/�2 and b � �1/�2. The four cut
points z1, z2, z3, and z4 define the five categories of test results. That
is, a variable with a value below the point defined by z1 indicates a
normal result; a variable with a value between z1 and z2, a benign
result; a variable with a value between z2 and z3, a probably benign
result; a variable with a value between z3 and z4, a suspicious result;
and a variable with a value above the point defined by z4, a malignant
result. Note that the binormal variables exist only in the mind of the
reader (ie, they are unobserved). When the reader applies the cut
points z1, z2, z3, and z4 to the unobserved variables, we obtain the
observed five categories of test results.

Figure 3. Graph shows comparison of three
ROC curves. A perfect test has an area under
the ROC curve of 1.0. The chance diagonal has
an ROC area of 0.5. Tests with some discrimi-
nating ability have ROC areas between these
two extremes.
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reading at MR imaging essentially estab-
lishes the diagnosis of MS (MR images in
only two of 140 patients without MS
were scored as definitely showing MS, for
an FPR of 1%). However, a normal MR
imaging result does not conclusively ex-
clude the diagnosis of MS (MR images in
35 of 163 patients with MS were scored as
definitely not showing MS, for a false-
negative rate of 21%).

In the second example, Iinuma et al
(16) compared the accuracy of conven-
tional radiography and digital radiogra-
phy for the diagnosis of gastric cancers.
One hundred twelve patients suspected
of having gastric cancer underwent con-
ventional radiography, and 113 different
patients with similar symptoms and
characteristics underwent digital radiog-
raphy. Six readers interpreted the images
from all 225 patients; the readers were
blinded to the clinical details of the pa-
tients. The images were scored with a six-
category scale, in which a score of 1 in-
dicated that cancer was definitely absent;
a score of 2, cancer was probably absent;
a score of 3, cancer was possibly absent; a
score of 4, cancer was possibly present; a
score of 5, cancer was probably present;
and a score of 6, cancer was definitely
present. The diagnostic standard consisted
of the findings of a consensus panel of
three radiologists (not the same individuals
as the six readers) who examined the pa-
tients and were told of the findings of
other tests, such as endoscopy and his-
topathologic examination after biopsy.

The ROC curve areas of the six readers
were all higher with digital radiography
than with conventional radiography; the
average ROC curve areas with digital and
conventional radiography were 0.93 and

0.80, respectively. By plotting the fitted
ROC curve areas of each of the six read-
ers, the authors determined that for five
of the six readers, digital radiography re-
sulted in higher sensitivity for all FPRs;
for the sixth reader, digital radiography
resulted in considerably higher sensitiv-
ity only at a low FPR.

In summary, the ROC curve has many
advantages as a measure of the accuracy
of a diagnostic test: (a) It includes all pos-
sible cut points, (b) it shows the relation-
ship between the sensitivity of a test and
its specificity, (c) it is not affected by the
prevalence of disease, and (d) from it we
can compute several useful summary
measures of test accuracy (eg, ROC curve
area, partial area). The ROC curve alone
cannot provide us with the optimal cut
point for a particular clinical application;
however, given information about the
pretest probability of disease and the rel-
ative costs of diagnostic test errors, we
can find the optimal cut point on the
ROC curve. There are many study design
issues (eg, patient and reader selection,
verification and diagnostic standard bias)
that need to be considered when one is
conducting and interpreting the results
of a study of diagnostic test accuracy.
Many of these issues will be covered in a
future article.

APPENDIX

The area under the empirical ROC curve
can be estimated as follows: First, consider
every possible pairing of patients with dis-
ease and patients without disease. Give each

pair a score of 1.0 if the test result for the
patient with disease is higher (ie, more sus-
picious for disease), a score of 0.5 if the test
results are the same, and a score of 0.0 if the
test result for the patient with disease is
lower (ie, less suspicious for disease). Sec-
ond, take the sum of these scores. If there
are N nondiseased patients and M diseased
patients in the sample, then there are M � N
scores. Finally, divide the sum of these
scores by (M � N). This gives the estimate of
the area under the empirical ROC curve.

Figure A1 depicts a fictitious data set. The
process described and illustrated in the figure
can be written mathematically as follows (8):
Let Xj denote the test score of the jth patient
with disease and Yk denote the test score of
the kth patient without disease. Then,

A �
1

�M � N� �
� j�1�

M �
�k�1�

N

score�Xj, Yk�,

where A is the estimate of the area under
the empirical ROC curve and score(Xj, Yk) is
the score assigned to the pair composed of
the jth patient with disease and the kth
patient without disease. The score equals 1
if Xj is greater than Yk, equals 1

2
if Xj is equal

to Yk, and equals 0 if Xj is less than Yk. The
symbol in the following formula

�
�k�1�

N

ck

is called a summation sign. It means that we
take the sum of all of the ck values, where k is
from 1 to N. So, if N is equal to 12, then

�
�k�1�

N

ck � c1 � c2 � c3 � · · · � c12.

Figure 4. Graph shows two crossing ROC
curves. The ROC areas of the two tests are the
same at 0.80; however, for the clinically im-
portant range (ie, an FPR of less than 0.20), test
A is preferable to test B.

Figure A1. Fictitious data set and example of how to calculate the area under the empirical ROC
curve.
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